氟化钙晶体深紫外激光辐照损伤特性研究进展

宗慧雯1,2,3**, 赵江山1,2,3*, 宋兴亮1,2,3, 郭馨1,2, 王倩1,2,3, 李慧1,2, 周翊1,2,3

1中国科学院光电研究院投影光学室,北京 100094;

²北京市准分子激光工程技术研究中心,北京 100094;

³中国科学院大学,北京 100049

摘要 半导体光刻技术带动着光源逐步向短波辐射方向发展,以KrF-248 nm、ArF-193 nm 光源为代表的准分子激 光光刻光源逐步取代了以往基于汞灯的光刻光源,成为当前半导体光刻技术发展的主流光源。目前应用于光刻光 源的光学元件主要以在深紫外波段具有优异传输特性的氟化钙(CaF2)材料为主。针对光源研发过程中涉及的光 学元件与激光相互作用时会发生损伤的问题,从CaF2 材料自身的物化特性、激光辐射特性以及激光与材料相互作 用产生损伤的机理三个方面,综合分析了CaF2 材料抗紫外激光研究的发展情况,比较了不同应用背景下 CaF2 材 料的激光损伤特性,总结归纳了提高光学元件激光损伤阈值的措施和方法。

关键词 激光光学;准分子激光;氟化钙;激光损伤;损伤阈值 中图分类号 TN247 文献标识码 A

doi: 10.3788/LOP56.190002

Development of Research on Damage Characteristics of Calcium Fluoride Crystal Under Deep Ultraviolet Laser Irradiation

Zong Huiwen^{1,2,3}**, Zhao Jiangshan^{1,2,3}*, Song Xingliang^{1,2,3}, Guo Xin^{1,2}, Wang Qian^{1,2,3}, Li Hui^{1,2}, Zhou Yi^{1,2,3}

¹Department of Projection Optics, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China; ²Beijing Excimer Laser Technology and Engineering Center, Beijing 100094, China; ³University of Chinese Academy of Sciences, Beijing 100049, China

Abstract The development of semiconductor lithography technology requires light sources with short wavelengths. Excimer laser-based lithography light sources (i. e., KrF-248 nm and ArF-193 nm) are gradually replacing the previously used light sources based on a Hg lamp, which are the commonly used light sources in current semiconductor lithography technology. The optical components that are currently employed in lithographic light sources primarily use calcium fluoride (CaF₂) materials, which have excellent transmission characteristics in the deep ultraviolet region. In this study, the damage characteristics of the laser-material interaction in the development of the light source are analyzed. The development of the research on ultraviolet resistance of CaF₂ materials is comprehensively analyzed by investigating the physicochemical properties of CaF₂ materials, characteristics of laser radiation, and damage mechanism of the laser-material interaction. The laser damage characteristics of CaF₂ materials for different applications are compared. The approaches and methods to improve the damage thresholds of optical components are summarized.

Key words laser optics; excimer laser; calcium fluoride; laser damage; damage threshold OCIS codes 140.1340; 140.3330; 140.3380; 160.3220

收稿日期: 2019-02-28; 修回日期: 2019-03-25; 录用日期: 2019-04-15

基金项目:国家重大科技专项(2013ZX02202)

* E-mail: zhaojiangshan@aoe.ac.cn; ** E-mail: zonghuiwen16@mails.ucas.ac.cn

1 引 言

随着半导体光刻技术的发展,对光刻分辨率的 要求越来越高,光刻光源的主流选择已经从以往的 汞灯光源发展到以 KrF-248 nm、ArF-193 nm 为代 表的深紫外波段激光光源[1-3]。近年来,根据国家专 项工作部署,国内相关研发单位开始了ArF-193 nm 准分子激光光刻光源的研发,该光源具有更短的紫 外激光辐射波长和更大的单光子能量,传统的石英 材料在此类激光辐照下会形成色心,产生光致收缩 效应,导致折射率发生变化以及透射率急剧下降 等^[4],无法满足 ArF 准分子激光光刻光源的应用需 求。氟化钙(CaF2)材料具有传输光谱范围宽(从紫外 到红外波段)、紫外透过性能优异、抗激光损伤阈值 高、应力双折射低、折射率均匀性高和相对色散大等 优点[3-5],已成为应用于 ArF 准分子激光光刻光源的 光学元件材料的最佳选择。基于技术构建的双腔结 构准分子激光系统的使用寿命和稳定性在很大程度 上依赖于激光器系统中所使用的 CaF2 光学元件。因 此,研究深紫外激光与 CaF2 材料的相互作用,提高 CaF2 光学元件的抗激光损伤能力,对提高激光系统 的输出和负载能力具有重要的工程应用价值。

由于国内针对 ArF-193 nm 准分子激光光源的 研究工作起步较晚,相应深紫外波段下 CaF₂ 光学 元件激光损伤特性的研究工作开展得相对较少。目 前,仅有少数学者针对 CaF2 材料进行了相关研究, 如:中国科学院上海光学精密机械研究所的楼祺洪 等^[6]测得 ArF 激光器照射到材料表面(聚焦面积为 1 mm²)时的击穿阈值为 6 J/cm²;中国科学院长春 光学精密机械与物理研究所的邓文渊等[7]对用于 ArF 准分子激光器的 CaF2 基底进行了透射光谱、 反射光谱、衬底吸收、表面粗糙度、荧光光谱、傅里叶 变换红外光谱、拉曼光谱等一系列表征实验研究,发 现上述性能表征测试实验是进一步深入研究 CaF₂ 基底激光损伤特性的必要基础。许多国外著名公司 和研究机构如 Corning、Nikon、Hellma 等都联合用 户单位,面向专业领域需求,针对 CaF2 材料的光学 特征和晶体生长特性进行了长期、互动的深入研究, 取得了许多极具工程参考价值的研究成果。如日本 的 Gigaphoton 公司研究了 CaF₂ 窗口元件在高重复 频率(6 kHz)ArF-193 nm 准分子激光辐照下的损 伤形貌,分析了其表面损伤的发展机制,并且建立了 可以预估光学元件使用寿命的占空比测试系统[8]。 本文基于 CaF2 材料的自身性能,分析了深紫外激 光与 CaF₂ 材料的相互作用,总结了激光参数、材料 特性对激光损伤的影响,提出了改善 CaF₂ 材料激 光损伤阈值的方法,以保障 CaF₂ 光学元件在深紫 外激光辐照下的有效应用。

2 CaF₂ 材料特性

2.1 CaF₂ 的晶体性质

CaF₂ 晶体属于典型的等轴系晶体,表面和内部 都是立方晶体结构,晶格常数 a = 0.546 nm。图 1 为 CaF₂ 的晶体结构,单位晶胞分子数 z = 4,每个晶 胞内含有 4 个 Ca²⁺和 8 个 F⁻,其中 Ca²⁺位于立方 晶胞的角顶点和面中心上,如果把晶胞分为 8 个小 立方体,则每个立方体中心均由 F⁻占据,每一个 Ca²⁺由 8 个相等的、最近的 F⁻ 所包围,F⁻位于以 Ca²⁺为中心的立方体角上,由 4 个相等的 Ca²⁺形成 的四面体所包围。在(111)晶面方向上,每隔一层 Ca²⁺就有两层相邻的 F⁻,它们之间的结合力最弱, 因而晶体沿(111)晶面解理^[4,9]。

图 1 CaF2 晶体的结构示意图 Fig. 1 Structural diagram of CaF2 crystal

2.2 CaF₂ 的光学性质

1)透光范围宽(125~10000 nm),可覆盖从远紫外到中红外较宽的光谱范围;截止波长为
 125 nm,比熔石英的截止波长(200 nm)小得多。

2)透过率高。由图 2(a)可以看出 CaF₂ 晶体在 透光波段的透射率可达 90%以上,在紫外波段亦具 有其他材料无法比拟的透光性能,某些经特殊加工 工艺处理的 CaF₂ 晶体,其内部透射率可达 99.8%。

3) 折射率低。从图 2(b)可以看出 CaF₂ 晶体 在 125~10000 nm 波长范围内的折射率为 1.438~ 1.300,在 193 nm 紫外透光波段的折射率为 1.434, 小于熔石英在紫外透光波段的折射率(1.458)。低 折射率使 CaF₂ 成为应用于防反射膜的良好材料。 目前制造厂商加工的 CaF₂ 晶体的应力双折射最低 可达到 5 nm/cm,折射均匀性可达 3×10⁻⁶。

Fig. 2 CaF₂ crystal. (a) Transmission spectrum; (b) relationship between refractive index and wavelength^[4]

4) 吸收系数小,相对色散大,抗损伤阈值高。

2.3 CaF₂ 的物化性质

CaF₂ 的物化性质列表见表 1。根据表 1 可得 CaF₂ 具有以下特性。

1) 熔点低,为1423 ℃。

2)硬度低,对温度变化敏感,即使很小的温差也会 造成材料形变,因此在抛光过程中需要进行彻底清洗, 以防止抛光处理过程中在材料表面残留有抛光剂^[10]。

3) 热膨胀系数高,室温下为18×10⁻⁶ K⁻¹;热 形状和体
 导率小,室温下为9.71 W・m⁻¹・K⁻¹。在加工过 难以承受
 表1 CaF₂ 的物化性质^[9,12]

程中低速率的热量扩散会造成较高的热应力,因此 在加工过程中要不断地对 CaF₂ 材料进行热处理, 以防止出现晶体边缘破碎或者整体断裂^[11]。

4)化学性质比较稳定,具有轻微的吸湿性;不溶于有机溶剂;难溶于水,在18℃水中的溶解度为 0.0016g;微溶于稀无机酸,溶于浓无机酸,释放HF 气体;在高温(>800℃)下可吸收大气中的水分,这些水分在紫外激光辐照下吸收激光能量会造成材料 形状和体积的变化,从而导致应力产生,最终使材料 难以承受表面粗糙和弯曲而碎裂。

Parameter	Value	Parameter	Value
Crystal density /(g • cm ⁻³)	3.180	Melting point / °C	1423
Melt density $/(g \cdot cm^{-3})$	2.594	Boiling point / °C	2500
Young's modulus /GPa	89.80	Thermal emissivity	0.8
Shear modulus /GPa	33.77	Expansion coefficient of heat $/(10^{-6} \text{ K}^{-1})$	18
Volume modulus /GPa	82.71	Crystal thermal conductivity /($\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1}$)	9.71
Poisson's coefficient	0.28	Crystal heat transfer coefficient /($W \cdot m^{-2} \cdot K^{-1}$)	5
Moh hardness	4	Melt heat transfer coefficient /($W \cdot m^{-2} \cdot K^{-1}$)	10
Dielectric constant (1 MHz)	6.76	Specific heat (273 K) /($\mathbf{J} \cdot \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}$)	0.88

Table 1 Physicochemical properties of CaF₂^[9,12]

总体而言,CaF2 晶体具有紫外透过性能良好、 折射率低、应力双折射低、抗激光损伤阈值高、力学 性能良好和物化性能稳定等优点,因此成为研究深 紫外波段准分子激光光源的光学元件材料的最佳 选择。

3 深紫外激光与 CaF₂ 材料相互作用

光学材料的激光损伤是激光与物质相互作用的 结果,一方面取决于激光的辐照特性,如激光波长、 脉冲宽度、重复频率、单光子能量、平均功率、光斑尺 寸、辐照方式等;另一方面取决于材料的物化性质, 如基底的晶体结构、制造工艺、表面粗糙度及薄膜的 膜料选择、膜层厚度、镀膜特性等;此外,与使用环境 也有很大关系。深紫外激光与 CaF₂ 材料的相互作 用机理极其复杂,其损伤机制主要有多光子吸收、雪 崩电离和杂质缺陷吸收;其本质是电子吸收光子后 电离,产生自由载流子,自由载流子吸收激光能量雪 崩,导致自由载流子数量急剧增多,形成等离子体。 等离子体吸收激光能量后使材料升温,在材料表面 产生局部热应力,使材料发生熔融或者炸裂。目前, 国外许多学者都针对深紫外激光辐照下 CaF₂ 材料 的损伤特性进行了实验研究,探讨了激光诱导材料 损伤的机理,分析了激光参数和材料特性对激光诱 导材料损伤的影响。

3.1 激光参数对激光损伤的影响

深紫外激光与 CaF₂ 材料相互作用会造成材料烧

蚀或改性,例如当激光的能量密度高于材料的烧蚀阈 值时,紫外激光束会在材料表面累积照射造成材料损 伤^[13-16];不同脉宽的紫外激光束辐照材料时,会使离 子或中性粒子从材料表面析出,因此深紫外激光辐照 下 CaF₂ 晶体的辐照效应引起了人们极大的兴趣。

1993年,德国哥廷根大学激光实验室的 Mann 等^[17]首次采用脉冲能量为 10 mJ、峰值功率为 20 GW、脉冲持续时间为 560 fs 的 KrF-248 nm 准 分子激光测试了几种氟化物晶体 (CaF₂、MaF₂、 LiF₂、BaF₂等)和熔石英的激光损伤阈值,并与脉宽 为 25 ns 的脉冲激光辐照下材料的损伤阈值进行了 比较。由表 2 可见:在脉宽为 560 fs 的激光脉冲辐 照下,CaF₂、MgF₂、LiF₂、BaF₂和熔石英的激光损伤 阈值分别为 1.800, 1.700, 0.365, 0.341, 1.990 J/cm²;在脉宽为 25 ns 的脉冲激光辐照下, CaF₂、MgF₂、LiF₂、BaF₂和熔石英的激光损伤阈值 分别为 16.10,16.20,9.40,3.60,6.85 J/cm²。

表 2 紫外透射晶体和熔石英的激光诱导损伤阈值 Table 2 Laser induced damage thresholds of ultraviolet transmitting crystals and fused silica

Sample	Laser induced damage	Laser induced damage
	threshold @560 fs	threshold @25 fs
CaF_2	1.8	16.1
MgF_2	1.7	16.2
LiF_2	0.365	9.4
BaF_2	0.341	9.4
Suprasil	1.99	6.85

可见,纳秒级脉冲激光辐照下材料的损伤阈值 远高于飞秒级脉冲激光辐照下的损伤阈值,不同脉

宽激光作用下材料的损伤机制不同,不同的材料发 生损伤的主导机制也不同。对于纳秒级脉冲激光, 材料解吸是多种过程共同作用的结果,其中包括介 电材料中结构缺陷或掺杂物质因吸收激光能量而导 致的原子离子解吸、表面电子激发、单个原子烧蚀以 及多光子吸收;对于飞秒级脉冲激光,高强度的激光 脉冲与材料直接相互作用,由于多光子吸收,宽带隙 的氟化物晶体和熔石英分别需要吸收3个和2个光 子来提供能量,使电子跃迁到导带。由此可知非线 性效应是材料解吸的原因所在。

2002年,日本国家先进工业科学技术研究所的 Kawaguchi 等^[13]研究了 OKEN SEIKO 公司纯度 为 99.5% 的紫外级 CaF2 单晶,在脉宽为 20 ns 的 ArF-193 nm 准分子激光的多脉冲累积照射下的表 面烧蚀情况。实验发现:当激光束能量密度低于损 伤阈值时,光谱中出现了一条以 278 nm 为中心的 蓝色光谱带,此光谱带随着能量密度的增大而增长, 但不会影响紫外光辐照下 CaF2 晶体的性能;当激 光束能量密度逐渐增大并达到损伤阈值时,在材料 表面区域,肉眼便可以看到位于 424,431,446,459, 535,560,624,647 nm 处的几条谱线引起的等离子 体发光。图 3(a)所示即为对应于产生等离子体发 光的激光损伤区域的扫描电子显微镜(SEM)图像, 可以看到材料表面形成了直径为几微米的圆形褶皱 凸起,凸起周围存在直径为几百纳米的小凹坑。进 一步用激光辐照材料,在材料表面损伤较大的区域 可以观察到如图 3(b)所示的尺度为微米量级的三 角形碎片,说明材料发生了激光烧蚀。

图 3 CaF₂ 损伤的 SEM 图像。(a)在 6.7 J/cm² 下用 10 个 ArF 激光脉冲照射; (b)在 7.8 J/cm² 下用 6 个 ArF 激光脉冲照射^[13]

Fig. 3 SEM images of laser-damaged CaF₂. (a) Irradiated by ten ArF laser pulses (6.7 J/cm^2); (b) irradiated by six ArF laser pulses (7.8 J/cm^2)

2004年,美国太平洋西北国家实验室的 España 等^[18]采用脉宽分别为纳秒和飞秒级的 266 nm 紫外 激光对国际晶体实验室的 CaF₂ 样品进行脉冲照 射,研究了不同入射激光引起的 CaF₂ 材料的杂质 解吸。实验发现:使用纳秒级 266 nm 激光辐照 CaF₂ 样品 30 min 后,在样品的飞行时间质谱中可 观察到大量 Ca⁺、F⁺、CaF⁺和 Na⁺等杂质离子从晶 体表面发射;使用飞秒级 266 nm 激光辐照 CaF₂ 样 品后,仅能观察到大量的 Ca⁺ 和唯一的杂质离子 C⁺ 从晶体表面发射。可见,不同脉宽激光脉冲辐照 下材料的激光损伤不相同。当使用纳秒级脉冲激光 辐照 CaF₂ 材料时,晶体杂质水平对晶体行为有较 大影响,多个单光子吸收是离子发射的主要原因;当 使用飞秒级脉冲激光辐照 CaF₂ 材料时,多光子吸 收引起了固有原子解吸,晶体的纯度不再重要。

3.2 材料特性对激光损伤的影响

材料的晶格结构、杂质含量、表面粗糙度等的不同,也会导致其抗激光损伤性能的不同。例如: CaF2 晶体质地柔软,加工困难,不同抛光工艺处理 后的 CaF2 晶体的表面粗糙程度不同^[19-21],而高纯 度的 CaF2 晶体内部依旧会存在少量杂质,如钇离

> (a) 50 µm 1000 7ах (c) 50 µm 1000 7ах

子(Y³⁺)、钠离子(Na⁺)等,在采用深紫外激光长时间辐照后,这些杂质就会在晶格内部形成缺陷,导致材料的透过率降低以及光学吸收、色心等^[22-27];不同晶轴取向的 CaF₂ 晶体的性能会存在差异,进而对材料的激光损伤阈值产生影响^[28-29]。

1999年,德国慕尼黑大学物化研究所的 Reichling等^[19]采用光热偏转技术,利用脉宽为 14 ns的 KrF-248 nm 准分子激光分别对传统标准抛 光、单点金刚石车削和化学机械抛光处理后的 CaF₂ 晶体表面进行单次辐照,测量了它们的烧蚀损伤阈 值(20,28,43 J/cm²),并进一步研究了不同抛光技 术处理后样品表面的损伤形貌,如图 4(a)~(d) 所示。

图 4 不同能量密度的激光辐照 CaF₂(111)表面后的损伤形貌 SEM 图。(a)传统标准抛光,27.6 J/cm²; (b)金刚石车削,30 J/cm²;(c)化学机械抛光,57.7 J/cm²;(d)解理面平台区域,46 J/cm^{2 [19]}

Fig. 4 SEM images of damage topographies of CaF₂ (111) surfaces radiated by laser with different fluences.
(a) Conventional standard polish, 27.6 J/cm²; (b) diamond turned surface, 30 J/cm²; (c) chemo-mechanically polished surface, 57.7 J/cm²; (d) terrace area of cleaved surface, 46 J/cm²^[19]

由图 4(a)可以看到:激光辐照区域内部出现了 片状烧蚀,并沿着(111)解理面产生长裂缝;外围出 现了高密度的短裂缝,未出现消融。由图 4(b)可以 看到:激光辐照区域内部出现了大面积缺陷,主要是 裂缝和金属片烧蚀,表现为凹坑;受辐照区域具有清 晰的边界线,边界外围没有产生任何裂缝。由 图 4(c)可以看到:晶体表面仅出现一些直裂缝,未 出现任何烧蚀现象。由图 4(d)可以看到:两个台阶 之间的平台上存在消融,其他位置未出现任何烧蚀。 可见,材料的激光损伤行为不仅由晶体材料的性质 决定,材料的表面质量也起着决定性作用。 1999年,日本东京工业大学材料与结构实验室 的 Mizuguchi 等^[22]研究了在脉宽为 10 ns、能量密 度为 100 mJ/cm² 的 ArF-193 nm 准分子激光辐照 下,不同钇杂质含量[准分子级:1×10⁻⁶;紫外 (UV)级:5×10⁻⁶]和少许镧系杂质含量(Ce³⁺、 Eu²⁺和Tb³⁺的质量分数都小于 0.1×10⁻⁶)的直径 为 30 mm、厚度为 3 mm 的 CaF₂ 单晶的时间分辨 光致发光光谱,并观察到如图 5 所示的几条光谱带。 带 1:峰值波长为 274 nm,半峰全宽为 0.9 eV,寿命 为 1.0 μ s;带 2 和带 3:峰值波长为 303 nm/309 nm, 半峰全宽为 0.2 eV,寿命 30 ns;带4:峰值波长为

图 5 CaF₂ 样品在 ArF 准分子激光脉冲辐照下的时间分辨光致发光光谱。(a)准分子 A 级;(b)准分子 B 级;(c) UV 级^[22] Fig. 5 Time-resolved photoluminescence spectra of CaF₂ specimen under excitation with ArF excimer laser pulse. (a) Excimer grade A; (b) excimer grade B; (c) UV grade^[22]

417 nm,半峰全宽为 0.2 eV,寿命为 760 ns;带 5:峰 值波长为 541 nm,半峰全宽为 0.09 eV,寿命为 5 ms。

带1由双光子吸收引起,为CaF2晶体的固有 发射带;带2和带3处的双峰吸收带与CaF2中 Ce³⁺的发光有关;带4处强烈的蓝色发光带与CaF2 中Eu²⁺的发光有关;带5处黄绿色的荧光谱带与 CaF2中Tb³⁺的发光有关,这种光谱带的强度很弱, 但寿命极长。对此3种不同等级样品的光学吸收光 谱进行研究后发现,准分子级CaF2晶体没有显著 吸收,而UV级CaF2晶体显示出强烈的吸收特性。 具有两个电子的氟空位和最邻近的Y³⁺构成了缺 陷,导致了能量峰值分别为2.1,3.1,3.7,5.5,6.6 eV 的5条特征带出现。因此,CaF2晶体中Y³⁺的存在 会导致材料色心的形成和透过率的降低。

2000年,日本尼康公司的 Komine 等^[25]研究了 脉宽为 10 ns、重复频率为 100 Hz 的 ArF-193 nm 准分子激光辐照来自 4 个制造厂商的 20 个直径为 30 mm、厚度为 10 mm 的纯 CaF₂ 晶体样品(钠的质 量分数为 0.86×10^{-6})和掺杂 CaF₂ 晶体样品(钠质 量分数为 16×10^{-6})的激光诱导吸收光谱(图 6),认 为高纯度和钠掺杂的 CaF₂ 晶体的吸收峰值波长基 本一致,分别为 332,384,600 nm。这一结果与 CaF₂ 晶体在 X 射线辐照下引起的色心(峰值波长 为 325,385,600 nm)一致,表明由 ArF 激光辐照引 起 CaF₂ 晶体的钠相关色心与 X 射线辐照引起的色 心相同,可见钠杂质浓度会影响纯 CaF₂ 晶体中色 心的形成。

2003 年,德国耶拿物理高技术研究所的 Muehlig 等^[27]使用重复频率为50 Hz、能量密度为 10 mJ/cm²的ArF-193 nm 准分子激光辐照尺寸为 25 mm×25 mm×100 mm 的高纯度 CaF₂ 样品,研 究了 CaF₂ 的激光诱导荧光光谱,分析了痕量杂质

图 6 钠掺杂 CaF₂ 晶体(样品 A)和典型纯 CaF₂ 晶体(样品 B)的 ArF 激光诱导吸收光谱^[25]

Fig. 6 ArF-induced absorption spectra of sodium-doped $$CaF_2$$ crystal (sample A) and typical pure-CaF_2 \$\$crystal (sample B)^{[25]}\$}

和结构缺陷在激光辐照下对材料性能的影响。实验 发现了峰值波长在 278 nm、313 nm/333 nm、 420 nm、450 nm、500 nm、580 nm、740 nm 处的 8 条 发射带,其中峰值波长在 278 nm、313 nm/333 nm、 420 nm 的发射带与 Mizuguchi 等的研究结果类似, 与峰值波长为 450 nm、580 nm、740 nm 的发射带相 关的杂质或缺陷的存在会限制 ArF 准分子激光辐 照下 CaF₂ 材料的性能。

2010年,日本尼康公司的 Azumi 等^[28]测量了 直径为 30 mm、厚度为 3 mm、内部透射率为 99.8% 的不同晶轴取向(<1111>、<110>、<001>)的 CaF₂ 晶 体,在重复频率为 100~1000 Hz、脉冲能量为 8~20 mJ、脉宽为 20 ns 的 ArF-193 nm 准分子激光辐照 下的损伤阈值,得到如图 7 所示的实验结果。图 7 表明,当激光照射<111>轴时,材料的激光损伤阈值 最高。利用光学显微镜观察到激光聚焦区域存在黑 点,黑点附近存在沿<110>轴方向延伸的裂缝或结构 变化。可见,晶轴取向的不同会造成晶体性质的不 同,从而对材料的激光损伤阈值产生影响。

2015年,日本尼康公司的 Azumi 等^[29]利用能

量密度为 50 mJ/cm² 的 ArF-193 nm 准分子激光辐照 CaF₂ 晶体(100000 脉冲),得到了激光损伤阈值 随激光偏振面与晶轴取向之间夹角的变化关系,如图 8 所示。当激光偏振面与〈111〉轴之间的角度为 180°时,材料的激光损伤阈值最高,当激光偏振面与〈111〉轴之间的角度为 90°时,材料的激光损伤阈值 最低。Azumi 和 Nakahat 分析认为这是由于激光偏振面和晶轴之间夹角的不同,使 CaF₂ 具有不同 的原子排列和能带结构,从而造成激光诱导吸收差 异,导致激光损伤阈值随之发生变化。

4 提高 CaF₂ 材料激光损伤阈值的 方法

经过几十年的研究,国内外学者已经掌握了许 多提高光学元件的抗激光损伤能力的方法,在材料 冷加工技术方面取得了较大进步,通过控制合适的 工艺参数,采取特殊的加工工艺,可以加工出高质量 的 CaF₂ 晶体,如采取离子束抛光、磁流变抛光等。 此外,利用后处理技术如激光退火或超声清洗,或者 物化手段如增镀 SiO₂ 保护膜等,亦可以去除材料表 面或内部的杂质缺陷,很大程度上提高 CaF₂ 材料 在深紫外激光辐照下的激光损伤阈值。

4.1 激光退火处理

光学元件表面存在一定的缺陷,激光退火处理 就是采用能量密度低于光学元件损伤阈值的激光能 量对光学元件进行辐照,以去除元件表面和内部的 挥发性杂质(如灰尘、污染物等),从而避免缺陷吸收 激光能量使材料发生大面积损坏。

1990年,英国拉夫伯勒理工大学的 Kerr 等^[30] 研究了一系列材料(CaF₂、MgF₂、熔石英、GaAs 等) 经脉宽为 20 ns 的 KrF-248 nm 准分子激光退火处 理后的激光损伤,观察了退火处理后 CaF₂ 晶体和 熔石英的表面组成、形态和结构改变,发现激光退火 可以去除或降低材料表面的粗糙度程度,显著改善样品表面的激光损伤。

4.2 清洗技术

传统的抛光处理工艺会在光学元件表面残留很 多污染物杂质及缺陷,如抛光粉颗粒、化学反应生成 物等,导致基片性能不佳。为获得不含杂质和污染 物吸附的洁净表面,可以用超声波清洗等清洗技术 去除材料表面残留的微粒。

2011年,美国劳伦斯利弗莫尔国家实验室的 Stolz 等^[31]采用脉宽为 13 ns、重复频率为 100 Hz 的 ArF-193 nm 平顶状准分子激光,对 12 个紫外激 光增反膜(反射率最小为 97%,涂层材料和沉积方 法自选)进行激光损伤阈值测试,结果发现采用手工 清洁或甲醇超声清洗的基底样品的激光损伤阈值明 显高于其他样品,并且抗激光损伤能力较强的样品 的损伤阈值为较差样品阈值的 70 倍,这一清洗技术 同样适用于 CaF₂ 晶体。

4.3 超精密抛光技术

CaF₂ 晶体具有硬度低、易破碎、各向异性、热膨 胀系数高、热导率小等特性。材料表面的力学性能 会随着晶向的改变而发生变化,采用传统机械抛光 技术加工的 CaF₂ 晶体表面会呈现 3 个高区和 3 个 低区的扇形褶皱(称为"三瓣效应")^[32],表面粗糙度 较高,难以获得较好面形;采用单点金刚石车削技术 加工的 CaF₂ 晶体表面会产生脆性破裂、划痕等表 面或亚表面损伤^[33],破坏晶体表面的完整性。因 此,采用传统机械抛光和单点金刚石车削加工工艺 难以获得超精密的 CaF₂ 晶体表面,不能达到深紫 外激光系统的要求。

2009年,中国国防科学技术大学的谢超[34]对直

径为 100 mm 的 CaF₂(111)单晶的磁流变抛光工艺 参数进行了研究,通过分析工艺参数对 CaF2 晶体 表面质量(粗糙度和去除率)的影响规律,得出:当磁 场强度为 3.5 A/m、抛光液流量为 80 L/min、抛光 盘转速为 300 r/min、抛光盘与工具的间隙为 1 mm 时,去除效果最好;当磁场强度为1.5 A/m、抛光液 流量为 60 L/min、抛光盘转速为 300 r/min、抛光盘 与工具的间隙为 1.4 mm 时,表面粗糙度最低。同 时他还提出了驻留时间补偿优化方法,通过对磁流 变驻留时间补偿工艺方法抛光的 CaF2 晶体面形进 行仿真,得出此优化方法能够有效消除"三瓣效应", 实现面形精度提高[35]。因此,磁流变抛光作为一种 非接触式抛光,不会在材料表面产生机械力;选择合 适的工艺参数,在满足粗糙度的前提下提高去除效 率,对 CaF2 进行抛光,可实现高精度 CaF2 晶体的 加工[34-36]。

2013年,中国国防科学技术大学的袁征等[37]提 出了采用化学机械抛光和离子束抛光相结合的加工 工艺方法。他先利用化学机械抛光去除传统机械抛 光在 CaF₂ 晶体表面产生的划痕,抛光压力为 0.1 MPa, 抛光模转速为 30 r/min, 获得表面粗糙度 为 0.268 nm 的超光滑表面;再利用离子束抛光(40° 倾斜角入射)对 CaF2 晶体的面形进行误差修正,入 射离子能量设定为 500 eV, 束流为 30 mA, 工作压 强为 2.1×10^{-2} Pa, 使面形精度大幅提高: 峰谷 (PV)值由原来的 169.69 nm 提高到 13.14 nm,均方 根(RMS)由原来的 41.24 nm 提高到 1.06 nm,表面 粗糙度由原来的 0.268 nm 提高到 0.281 nm。可 见,采用化学机械抛光和离子束抛光相结合的加工 方法不仅能提高 CaF2 晶体的面形精度,而且基本 保持了 CaF2 晶体的表面粗糙度,可以获得高精度、 超光滑的 CaF2 晶体表面。

4.4 加镀保护膜层

在薄膜表面上加镀一层半波长整数倍的低折射 率 SiO₂ 薄膜,既不会影响膜层的反射率,也不会影 响膜层的电场分布,而且可以有效提高薄膜的抗损 伤能力。这可能是由于 SiO₂ 保护膜层的存在改善 了薄膜的表面形态,减少了由表面缺陷引起的损伤。 同时 SiO₂ 保护膜自身具有低吸收和高抗损伤能力, 使膜层内的杂质在相同能量的激光辐照下更难冲出 膜层表面形成损伤^[38]。目前,增镀保护涂层的方法 已经应用于以氟化物为基底的增透(AR)膜层,该方 法可以降低材料的散射损耗,提高材料光学性能的 稳定性^[5]。 2016年,美国康宁公司的 Wang 等^[39]采用脉宽 为 20 ns、重复频率为 20 Hz 的 ArF-193 nm 准分子 激光辐照具有 F-SiO₂ 保护涂层的亚表面无损 CaF₂ 基底和具有 F-SiO₂ 保护涂层的镀 AR 膜亚表面无 损 CaF₂ 基底,研究了它们的损伤阈值,结果如图 9 所示。可见,具有 F-SiO₂ 保护涂层的镀 AR 膜亚表 面无损 CaF₂ 基底的损伤阈值为 3 J/cm²,它具有更 好的激光耐久性,且在 193 nm 波段处的透射率提 高了 9%。

图 9 F-SiO₂ 保护膜涂层和 F-SiO₂ 保护 AR 涂层的激光 诱导损伤概率与能量密度的关系^[39]

Fig. 9 Laser-induced damage probability as a function of fluence for $F-SiO_2$ protective coating and $F-SiO_2$ protected AR coating^[39]

5 结束语

半导体光刻技术的发展对深紫外激光系统中应 用的 CaF₂ 材料的抗激光损伤能力提出了越来越高 的要求。目前,许多国外研究机构从 CaF₂ 材料特 性、深紫外激光与 CaF₂ 材料相互作用、提高 CaF₂ 材料的抗激光损伤能力等角度出发,针对深紫外激 光辐照下 CaF₂ 材料的损伤特性进行研究,并取得 了一定的研究成果。在国内相关专项工作的支持 下,少数相关研发单位正逐渐开展相关研究工作, 如:中国科学院光电研究院正针对来源于不同公司 (Corning、Nikon 和 Layertec 等)的 CaF₂ 材料用高 重复频率窄线宽 ArF-193 nm 深紫外激光光刻时的 寿命和损伤特性进行了研究;中国科学院长春光学 精密机械与物理研究所针对以 CaF₂ 材料为基底的 氟化物和氧化物薄膜的损伤特性进行了研究。

在集成电路光刻制造领域,浸没式光刻对 ArF-193 nm 准分子激光的要求也越来越高,需要在高重 复频率(4~6 kHz)下保持窄线宽(<0.1 pm)和高 稳定性,且功率要求达到 20 W。在高功率 ArF-193 nm激光辐照下,CaF₂ 材料吸收激光能量 后会产生损伤,影响激光的光束质量,降低系统的工 作性能。为了提升激光系统的综合有效性能,进一步开展深紫外激光与 CaF₂ 材料相互作用的理论与 实验研究,需要研究不同激光参数(如重复频率、能 量密度、辐照时间)辐照下 CaF₂ 材料的激光损伤特 性,利用研究结果优化激光系统设计,提高激光系统 的输出和负载能力。此外,从 CaF₂ 光学元件的制 造加工工艺(如生长、抛光、镀膜和保存)等方面提高 CaF₂ 光学元件的抗激光损伤能力,带动光学材料加 工制备技术的进步,仍是需要进一步努力的方向。

参考文献

- [1] Yu Y S, You L B, Liang X, et al. Progress of excimer lasers technology [J]. Chinese Journal of Lasers, 2010, 37(9): 2253-2270.
 余吟山,游利兵,梁勖,等.准分子激光技术发展 [J].中国激光, 2010, 37(9): 2253-2270.
- [2] Endert H, Pätzel R, Rebhan U, et al. New KrF and ArF excimer lasers for advanced deep ultraviolet optical lithography [J]. Japanese Journal of Applied Physics, 1995, 34(8A): 4050-4054.
- [3] Dong Y J, Zhou G Q, Yang W Q, et al. Research and development of calcium fluoride crystals [J]. Laser & Optoelectronics Progress, 2003, 40(8): 43-47.

董永军,周国清,杨卫桥,等.氟化钙(CaF₂)晶体研 发进展[J].激光与光电子学进展,2003,40(8):43-47.

[4] Duan A F, Fan Y, Liu J L, et al. Studies on CaF₂ single crystals and its processing technique [J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2007, 30(2): 97-99.

段安锋,范翊,刘景和,等. CaF₂ 晶体及加工技术研 究[J]. 长春理工大学学报(自然科学版), 2007, 30 (2): 97-99.

- [5] Wang J. Surface assessment and mitigation of DUV optics [J]. Proceedings of SPIE, 2015, 9628: 96280Y.
- [6] Lou Q H, Xu J Q, Luo S. Optical materials and film layers for ArF and KrF excimer lasers [J]. Laser & Optoelectronics Progress, 1997, 34(5): 9-15.
 楼祺洪,徐剑秋,罗山. ArF和KrF准分子激光器用 的光学材料和膜层的抗激光强度[J].激光与光电子 学进展, 1997, 34(5): 9-15.
- [7] Deng W Y, Jin C S, Jin J C. Characterization of CaF₂ substrates for ArF excimer laser[J]. Chinese Journal of Lasers, 2011, 38(10): 1002004.

邓文渊,金春水,靳京城.用于 ArF 准分子激光器的 CaF₂ 衬底性能的实验表征 [J].中国激光,2011,38 (10):1002004.

- [8] Tei D, Hattori M, Kumazaki T, et al. Laserinduced damage and defect analysis of calcium fluoride window caused by the high pulse repetition rate of ArF excimer laser radiation [J]. Proceedings of SPIE, 2018, 10805: 108050H.
- [9] Su L B, Yang W Q, Dong Y J, et al. Research and progress of CaF₂ crystal growth [J]. Journal of Synthetic Crystals, 2003, 32(5): 476-482.
 苏良碧,杨卫桥,董永军,等.氟化钙晶体生长的研 究进展[J].人工晶体学报, 2003, 32(5): 476-482.
- [10] Retherford R S, Sabia R, Sokira V P. Effect of surface quality on transmission performance for (111) CaF₂ [J]. Applied Surface Science, 2001, 183(3/4): 264-269.
- [11] Liu H W, Jiang G J, Shen Y H. Material characteristic of fluorite and optical processing [J]. Journal of Synthetic Crystals, 1997, 26(3/4): 396.
 刘汉伟,姜国经,沈永宏.萤石材料性能与光学加工[J].人工晶体学报, 1997, 26(3/4): 396.
- [12] Nicolov M. Shaped single crystals of CaF₂ [J]. Journal of Crystal Growth, 2000, 218(1): 62-66.
- [13] Kawaguchi Y, Narazaki A, Sato T, et al. Onset of laser ablation in CaF₂ crystal under excimer laser irradiation[J]. Proceedings of SPIE, 2002, 4637: 13-20.
- [14] Johansen H, Gogoll S, Stenzel E, et al. Semanalysis of fracture features formed in excimer-laser induced surface damage of CaF₂ [J]. Radiation Effects and Defects in Solids, 1995, 136: 151-156.
- Gogoll S, Stenzel E, Reichling M, et al. Laser damage of CaF₂ (111) surfaces at 248 nm [J]. Applied Surface Science, 1996, 96/97/98: 332-340.
- [16] Guo T Y, Zhang L M, Ren Y Y, et al. Surface characteristics of CaF₂ crystal ablated by femtosecond laser[J]. Acta Optica Sinica, 2019, 39(1): 0126017.
 郭太勇,张立木,任莹莹,等.飞秒激光烧蚀氟化钙 晶体 表 面 特性[J].光学学报, 2019, 39(1): 0126017.
- [17] Mann K R, Pfeifer G, Reisse G. Damage threshold measurements using femtosecond excimer laser [J].
 Proceedings of SPIE, 1993, 1848: 415-423.
- [18] España A, Joly A G, Hess W P, et al. Laserinduced damage of calcium fluoride [J]. Journal of Undergraduate Research, 2004, 4: 60-65.
- [19] Reichling M, Sils J, Johansen H, et al. Nanosecond

UV laser damage and ablation from fluoride crystals polished by different techniques [J]. Applied Physics A: Materials Science & Processing, 1999, 69(7): S743-S747.

- [20] Sils J, Reichling M, Matthias E, et al. Laser damage and ablation of differently prepared CaF₂ (111) surfaces[J]. Czechoslovak Journal of Physics, 1999, 49(12): 1737-1742.
- [21] Stenzel E, Gogoll S, Sils J, et al. Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades[J]. Applied Surface Science, 1997, 109/110: 162-167.
- [22] Mizuguchi M, Hosono H, Kawazoe H, et al. Time-resolved photoluminescence for diagnosis of resistance to ArF excimer laser damage to CaF₂ single crystals
 [J]. Journal of the Optical Society of America B, 1999, 16(7): 1153-1159.
- [23] Mizuguchi M, Hosono H, Kawazoe H, et al. Generation of optical absorption bands in CaF₂ single crystals by ArF excimer laser irradiation: effect of yttrium impurity[J]. Journal of Vacuum Science &. Technology A: Vacuum, Surfaces, and Films, 1998, 16(16): 3052-3057.
- [24] Mizuguchi M, Hosono H, Kawazoe H, et al. Color center formation and time-resolved photoluminescence for ArF excimer laser irradiation in CaF₂ single crystals [J]. Proceedings of SPIE, 1998, 3424: 60-70.
- [25] Komine N, Sakuma S, Shiozawa M, et al. Influence of sodium impurities on ArF excimer-laser-induced absorption in CaF₂ crystals [J]. Applied Optics, 2000, 39(22): 3925-3930.
- [26] Tijero J M G, Jaque F. Thermal and optical properties of the F_A and (F⁺₂)_A centers in Na-doped CaF₂ crystals[J]. Physical Review B, 1990, 41(6): 3832-3836.
- Muehlig C, Triebel W, Toepfer G, et al. Calcium fluoride for ArF laser lithography: characterization by in situ transmission and LIF measurements [J]. Proceedings of SPIE, 2003, 4932: 458-466.
- [28] Azumi M, Nakahata E. Study of relation between crystal structure and laser damage of calcium fluoride
 [J]. Proceedings of SPIE, 2010, 7842: 78421U.
- [29] Azumi M, Nakahata E. Laser damage of calcium fluoride by ArF excimer laser irradiation [J].

Proceedings of SPIE, 2015, 9632: 963213.

- [30] Kerr N C, Emmony D C. The effect of laser annealing on laser-induced damage threshold [J]. Journal of Modern Optics, 1990, 37(4): 787-802.
- [31] Stolz C J, Blaschke H, Jensen L, et al. Excimer mirror thin film laser damage competition [J].
 Proceedings of SPIE, 2011, 8190: 819007.
- [32] Marsh E R, John B P, Couey J A, et al. Predicting surface figure in diamond turned calcium fluoride using in-process force measurement [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005, 23(1): 84-89.
- [33] Yan J W, Syoji K, Tamaki J. Crystallographic effects in micro/nanomachining of single-crystal calcium fluoride [J]. Journal of Vacuum Science &. Technology B: Microelectronics and Nanometer Structures, 2004, 22(1): 46-51.
- [34] Xie C. Research on magnetorheological finishing technics of optical mirror materials of CaF₂ [D]. Changsha: National University of Defense Technology, 2009: 20-28.
 谢超.氟化钙单晶材料的磁流变抛光工艺研究[D]. 长沙:国防科学技术大学, 2009: 20-28.
- [35] Dumas P, Golini D, Tricard M. Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF) [J].
 Proceedings of SPIE, 2005, 5786: 296-304.
- Zhong X Y, Fan B, Wu F. High precision processing CaF₂ application research based on the magnetorheological finishing technology [J].
 Proceedings of SPIE, 2017, 10448: 104481Y.
- [37] Yuan Z, Dai Y F, Xie X H, et al. Research on ultraprecise figuring for CaF₂ single crystal[J]. Journal of Mechanical Engineering, 2013, 49(17): 46-51.
 袁征,戴一帆,解旭辉,等.氟化钙单晶超精密抛光 技术[J]. 机械工程学报, 2013, 49(17): 46-51.
- [38] Zhan M Q. Enhancement of the LIDT of optical coatings[J]. Journal of Shanghai Second Polytechnic University, 2010, 27(4): 304-308.
 占美琼.提高光学薄膜激光损伤阈值的途径[J].上海第二工业大学学报, 2010, 27(4): 304-308.
- [39] Wang J, Cox G P, D'Lallo M J, et al. Laser-induced damage of F-SiO₂ protected fluoride based AR coating on a subsurface-damage-free CaF₂ at 193 nm [J]. Proceedings of SPIE, 2016, 10014: 100140A.